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Abstract

In this paper we revive classical methods (i.e. those needed to synthesize analog circuits for designing direct com-
puters) in order to conceive novel devices which we call piezo-electro-mechanical (PEM) structural members. By means
of two independent synthesis procedures, new circuital analogs for the uniformly damped Elastica and Kirchhoff-Love
plate are found. These circuits are used as electrical wave guides gyroscopically coupled to the corresponding me-
chanical members to design electrically dissipative PEM systems. The concept on which these systems are based exploits
piezoelectric transducers—uniformly distributed on the member—to transform strain energy into capacitive energy: this
last will be subsequently dissipated using resistors, the optimal value of which is determined by a pole placement
criterion. We underline that in PEM structures PZT transducers can be regarded, at the same time, as sensors and
actuators. By means of analytical methods and numerical simulations, the electro-mechanical constitutive parameters
of some PEM structures are determined and it is shown that they can be designed and may be technically feasible.
Moreover it is shown that in PEM structures, also when mechanical dissipative phenomena are negligible, mechanical
vibrations are efficiently damped by means of completely passive electrical circuits.
© 2002 Published by Elsevier Science Ltd.
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An analogy is a recognized relationship of consistent mutual similarity between the equations and
structures appearing within two or more fields of knowledge, and an identification and association
of the quantities and structural elements which play mutually similar roles in these equations and
structures, for the purpose of facilitating transfer of knowledge of mathematical procedures of analysis
and behavior of the structures between these fields (Firestone, 1956).
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1. Introduction
1.1. Objectives

In this paper well-established methods (i.e. those needed to synthesize the analog circuit for designing
direct computers) are revived in order to conceive novel devices: i.e. piezo-electro-mechanical structural
members. These devices are conceived as structural members in which a structural modification is intro-
duced aiming to obtain an efficient mechanical vibration damping. The structural modification consists in
bonding PZT transducers to the structural member and in electrically interconnecting them by means of
suitably synthesized circuits. We explicitly state that:

1. The interconnecting circuits must be governed by equations which are analogous to those governing the
mechanical vibrations.

2. We could not find anywhere in the literature the circuits which we have synthesized and are described in
the paper.

For an exhaustive treatment of the state of the art in analog methods we refer to Karplus and Soroka
(1959), Brillouin (1946) and Crandall et al. (1968).

The behavior of PEM structures and their properties are investigated by means of analytical methods
and numerical simulations: we prove that, once the mechanical properties of the structure are known, the
interconnecting electrical circuits can be designed in order to optimize its mechanical damping.

1.2. Historical background

A first attempt to exploit the direct and inverse piezoelectric effect in the conception of an electro-
mechanical transducer dates up to the late sixties (for reference see for e.g. Bardati et al., 1968; Barzilai and
Gerosa, 1967): such a device was imagined essentially constituted by two layers of deformable materials,
one of which exhibiting the behavior of a piezo-dielectric. The expected effect of the electromagnetic wave
was the deformation of the materials so to produce a mechanical wave.

Unfortunately it can be proven (see Bardati et al., 1968) that such a device cannot work: this is mainly
due to the huge difference between the electromagnetic and mechanical wave speeds. This impossibility
result made clear that only quasi-static electromagnetic regimes needed to be considered in the conception
of lumped energy transducers based on the piezoelectric effect. Therefore Engineering Science addressed
research efforts towards the realization of “quasi-static’” piezoelectric actuators driven by ‘“‘slowly varying”
electric fields.

The most recent technological developments endowed “quasi-static” piezoelectric actuators with high-
electro-mechanical coupling capability and more performing mechanical properties. Therefore an in-
creasing interest in mechanical vibrations control exploiting piezoelectric effect aroused. Indeed presently
(see ACX and Piezo Systems) comparatively very efficient and reliable “capacitive’” PZT actuators are
designed and produced: they are able to exert up to hundreds of newton, in presence of elongations of
hundreds of microstrains and applied voltage of hundreds of volt.

The behavior of such electro-mechanical transducers has been extensively studied (see Rogacheva, 1994;
Gandhi and Thompson, 1992; Inman, 2000; ACX). They show a two-fold behavior: as mechanical devices
they add stiffness to the structure and exert a mechanical action expending power on the deformation rate,
while, regarded as electrical devices, their Norton equivalent representation is a capacitor in parallel
connection with a current generator. The exerted mechanical action and the current generator are driven
respectively by the actuator capacitive voltage and deformation rate so that the whole device can be re-
garded as loss less.
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In the literature, using these actuators (see e.g. Wang, 1995; Valis et al., 1992), it is studied a lumped
control method for a single beam via one of the described piezoelectric actuators properly placed in the
area of highest strain and connected to an electric circuit resonant at a given eigenfrequency of the beam
itself.

As the theorem of maximum power transfer holds (see e.g. Balanis, 1997), this apparatus can allow for a
non-negligible energy transfer between the mechanical and the electrical forms, once the electrical im-
pedance is adapted to the mechanical one so that an electro-mechanical resonance is established and the
coupling effect, assured by the piezoelectric actuator, is effective.

When a set of actuators is used, the problem of their optimal location on the structural member arises.
Obviously such a location strongly depends on the mode to be controlled: indeed in both the case of beam
or plate vibrations control it can be proven (see e.g. Batra and Ghosh, 1995) that a location effective for one
mode is often ineffective for the others. Therefore several authors (see e.g. Bernadou and Haenel, 2000;
Bernadou and Haenel, submitted; Hoffmann and Botkin, 1999; Botkin, 1999; Hoffmann and Botkin, 2000)
considered plates in which a set of piezoelectric actuators is uniformly embedded. The homogenized evo-
lution equations for such a device are derived when (i) the number of actuators is very large, their size is
correspondingly small and the plate area “covered” by the actuators is kept fixed (ii) every actuator is
connected to an electric circuit imposing at its electric terminals a given potential drop, eventually de-
pending on time. In all described devices each actuator is electrically connected to a single circuit which has
to include active components, also when the circuit is a (nominally passive) resonant RLC: indeed the
requested inductances are too high to be technically feasible without voltage power supplies. Furthermore
using the single-actuator-connected-to-a-single-resonant-circuit configuration, every actuator could be
forced in some particular circumstances to stand a greater amount of the electro-mechanical energy transfer
from the vibrating beam to the resonant circuit. As a consequence high performances are required to the
single actuator.

In order to cure these drawbacks in dell’Isola and Vidoli (1998a,b) it is proposed to interconnect a set of
piezoelectric actuators—uniformly distributed over a beam—to a lumped circuit so as to obtain a trans-
mission line. In this way it is provided a support for the propagation of an electric wave, the speed of which
can be suitably tuned to the mechanical wave speed. This concept again is related to the result described by
Bardati et al. (1968) and Barzilai and Gerosa (1967): indeed as the electromagnetic waves propagate in a
dielectric layer too quickly then, in order to have an efficient electro-mechanical energy transfer, such a
layer has to be split into a set of lumped piezoelectric actuators “electrically embedded” in a waveguide
synthesized so to get low-speed waves.

Such a propagative approach was explicitly proposed and studied by dell’Isola and Vidoli (1998a,b),
where an electro-mechanical waveguide with the electric wave component not directly supported by a
piezoelectric layer is considered.

A precursory paper to dell’Isola and Vidoli (1998a,b) is Hagood and von Flotow (1991) where it is
experimentally proven that a bending vibrating beam can excite a “telegraphist” lumped circuit waveguide.

The notion of electro-mechanical coupled wave propagation seems very fruitful in the design of devices
aimed to control mechanical vibration using piezoelectric actuators: indeed it requires less performing
actuators and electric components, distributing the coupling tasks among several piezoelectric patches
which respond synergically, (see dell’'Isola and Vidoli, 1998a,b; Vidoli and dell’Isola, 2000; Valis et al.,
1992). In dell'lsola and Vidoli (1998a,b) it is seen that because of the analogy between the telegraphist
transmission line and the extensionally vibrating beam, a simultaneous control of all the extensional vi-
brating modes can be achieved, while such a simultaneous control cannot be extended to the transverse
vibration of the beam; in particular the considered transmission line can be tuned to control only one
transversal mode of the system. This limit is recognized to be related (Vidoli and dell’Isola, 2000) to the
different spectral properties of the operators governing the deflection of the transversely vibrating beam and
the electric signal in the telegraphist transmission line.
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1.3. Description of the proposed novel device

The present paper stems from some results found in Vidoli and dell’Isola (2000): they indicate that in
order to obtain the most efficient way to control vibration in a given frame, via piezoelectric actuator
interconnected to electric circuits, modal characteristics must coincide with those of the electrical network.

We find some analog circuits for the Euler beam and Kirchhoff-Love plate also in presence of dampers.
We then draw our attention to what we call conservative piezo-electro-mechanical systems (or conservative
PEM structures).

They are constituted by:

1. a structural member (e.g. a plate or a beam, see for instance Fig. 1),
2. a set of actuators uniformly distributed on the considered structural member,
3. the corresponding analog circuit including as elements the piezoelectric actuator.

As the main purpose of our design is to conceive a device apt to efficiently damp structural vibrations, we
also introduce the “electrically dissipative” PEM structures.

They are realized coupling (by means of piezoelectric actuators) the mechanical structure to be damped
to the electric analog of the same structure but embedded in a viscous fluid (or equivalently connected to a
“bed” of dampers).

Some initial and boundary value problems for electrically dissipative PEM structures are solved using
Galerkin method, and a complete free propagation analysis for conservative PEM beams is developed.

The solutions we have obtained allow us to state that:

1. There exists an optimal circuital resistance enabling an efficient damping of mechanical vibration. Al-
though this resistance depends on the mode, that adapted for the first one is effective for all the others.

2. The concept underlying PEM structures seems to be ready for technological applications. Indeed we es-
tablish general design procedures for the considered electro-mechanical structures and prove that the
commercialized piezoelectric actuators allow for the constructions of technologically relevant devices.
The preparation of an experimental set-up seems to be feasible.

3. We prove that PEM dissipative structures represent a technologically effective structural modification of
the original mechanical ones (for a detailed discussion about the concept of structural modification see
e.g. D’Ambrogio and Sestieri, 1989). Indeed the introduced dissipative devices, while being effective, do
not impose constraints on the design and performances of mechanical structures to be damped.

1.4. Synopsis

In Section 2 different approaches to the synthesis of electric analog for a transversely vibrating beam are
addressed, providing circuits suitable to different fields of applications. We extend the results found in

| analog circuit |

piezoelectic actuators

beam

Fig. 1. Sketch of a PEM beam.
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Molloy (1958) generalizing the mobility representation to multiterminal structures and their synthesis
techniques by the introduction of multiport networks (Newcomb, 1966). The sophisticated synthesis pro-
cedure we have used allows for the synthesis of networks constituted by only purely passive and technically
realizable components. The developed space discretization schemes parallel the time discretization ones, of
importance in the design of digital filters employed e.g. in the control of industrial machines (see e.g.
Papoulis, 1991).

In Section 3 the previously derived electric analogs are coupled to a beam frame via piezoelectric ac-
tuators uniformly distributed on the structural members. Introducing a homogenized mathematical model
for PEM structures, a formal analysis of the coupled vibrating system is exhibited, supported by numerical
simulations. A more detailed study of simply supported or infinite PEM beams concludes the section.

In Section 4 resistors are properly inserted in the conservative analog circuits in order to get a purely
electrical damper. In a specific set of circuital analogs an optimal damping resistance is obtained using the
methods of Theory of Control.

In Section 5 an extension of the previous results obtained for a beam is provided for a plate.

2. Electrical analogs
2.1. The Euler beam

In order to derive the analog circuit for the Elastica, we will briefly recall a dimensionless form for its
balance and constitutive equations.

Let us consider a Saint-Venant purely flexible beam: the length of its axis will be denoted by /, the
thickness of its section by / (assumed to be rectangular), its bending stiffness and mass density per unit
length by K), ! and p.

We choose /, a given fixed moda circular] frequency > @ and / as the characteristic constants for the
dimensionless abscissa x, Laplace variable s and deflection u respectively. If rotational inertia can be ne-
glected, the dimensionless couple and force balance equations are (the superscript (] represents the de-
rivative with respect to the dimensionless time ¢):

M'(x,t) + T(x,t) =0,

hw? pit(x. 1), (1)

/
T'(x,t) =
0

where M and T are the dimensionless contact actions, and the characteristic bending moment M, and shear
contact force T are chosen as follows:

M, hK

0= 75 B,

I )
T() :l_3KM

Moreover the constitutive equation for the dimensionless bending moment M becomes (the superscript (I’
represents the dimensionless spatial derivative):

M(x,t) = u"(x,1). (3)

' Ky = YI, where Y is the Young modulus of the material constituting the beam and / is the moment of inertia of the beam section.
2 The characteristic time is consequently chosen as the inverse of @.
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Finally the governing equation for the deflection velocity v becomes:

o (x, ¢) 4+ o*(x, £) = 0, (4)
with
ot =t 2 (5)
Ky

It is convenient for our purposes to consider the problem in the Laplace domain, so that (1) becomes (where
O denotes the Laplace transform, and s represents the dimensionless Laplace variable):

M (x,s) + T(x,s) =0,

- 6

T'(x,s) = o*s%i(x, s), ©
and the governing equation for the deflection velocity v in the Laplace domain is:

7" (x, ) + o*s*B(x,s) = 0. (7)

2.2. Lumped circuital analogs for the elastica

In order to synthesize electrical analogs for the Elastica, different procedures can be used, each of them
leading, in general, to a particular circuital realization.

Indeed we can exhibit two different discrete forms of Eq. (7), defined on a set of sampling nodes equally
spaced on the beam (as shown in Fig. 2), to each of which different circuital graphs can be associated.

The first form is derived directly replacing the spatial differential operator in (7) by its centered finite
difference approximation, while the second one is based upon an approximated solution of a normal system
associated to (7).

The lumped circuits synthesized by the two techniques are different: the first one shows a simpler to-
pology (easily generalized to a plate), even if it cannot dispense with a power supply; while the second one is
constituted by completely passive electric components, even if it shows a more elaborate topology.

The flow chart in Fig. 3 illustrates the different paths walked in the two discussed approaches.

2.2.1. Synthesis of the analog circuit based on the finite difference method
Considering a centered finite difference rule, the discrete form of (7) becomes:

U—2(s) — 401 (s) - 40141 (s) + Oxpa(s) n (d4sz n %)ﬁk(S) o, ()
0 0

where k labels a generic inner node of the mesh (the boundary nodes will be separately discussed according

to the particular constraints imposed on the beam).

Let us explicitly remark that (8) represents a set of algebraic equations, which we want to regard as the
set of current balance equations for the sampling electric nodes of the analog circuit, once each node of the
electrical circuit is chosen to correspond to a unique sampling spatial node.

The electrical kinematical descriptor chosen to synthesize the analog is the voltage drop between each
sampling node and the ground. This choice corresponds to associate the dimensionless deflection velocity vy

o
q
o
q
o

b k1

Fig. 2. Mesh on the beam.
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Fig. 3. Flow chart illustrating the different strategies to the solution of the synthesis problem.

at each sampling node on the beam to the dimensionless potential ¥} at the corresponding electric node of
the analog circuit. *
Our goal is to find a circuital topology, so that the current balance equation at each node is

Vioa(s) — 4V (s) — 4V, 2 6\ -

iorlo) = i) Hinlo) + Bl <oc4s2 + —4) Fils) = 0. ©)
0 0

The branches of the sought circuital topology are assumed to be constituted by only two terminal networks

so that the current flowing through each circuital branch depends only on the voltage drop between the
connected nodes. These assumptions suggest to connect the kth node as shown in Fig. 4, i.e.:

1. to the ground,
2. to the (k & 1)th nodes and
3. to the (k £ 2)th nodes.

Assuming that (9) is obtained as the current balance equation at the kth node for the specified circuital
graph, in which generic admittances are considered, the circuit kth module of the analog is obtained as
specified in Fig. 5, if the inductance L and the capacitance C fulfill the following condition:

4
ch%a“ :[;LM(M)“. (10)

3 Characteristic potentials ¥ will be introduced in the next section while discussing the governing equations for the PEM beam and
its electric analogs.
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Fig. 4. Circuital topology of the analog circuit.

-L

L/4

T I I

Fig. 5. Elementary module of the analog circuit.

Let us explicitly remark that the presence of a negative inductance in the circuit forbids the realization of a
completely passive network, nevertheless it is easy to electronically simulate a negative inductor using RC
active circuits (see e.g. Bruton, 1980). The ideal scheme shown in Fig. 6 simulates a floating negative in-
ductance of value —L with:

L =R\R:C, (11)

making use of two operational amplifier only and providing a cheap and high performances realization.

:

R; = -L = R,R,C

A

R,

Fig. 6. Electronic circuit simulating a negative floating inductance.



S. Alessandroni et al. | International Journal of Solids and Structures 39 (2002) 5295-5324 5303

2.2.1.1. Synthesis of analog circuits for mechanical constraints. Since we are interested in the control and
damping of vibrations in beam frames, it is necessary to understand how to electrically synthesize, in the
analog circuit, the boundary conditions equivalent to the mechanical ones. Indeed the equivalence of the
boundary conditions, together with the analogy of the governing differential equations between the elec-
trical and the mechanical subsystems, guarantees a complete electro-mechanical modal matching.

Simple consideration, based on the finite difference rule, allow such a synthesis for the generic me-
chanical constraint: as an example in Figs. 7 and 8 the analog of a clamping and hinge device are provided.

2.2.2. Synthesis of the analog circuit based on the mobility matrix method
Let us consider the following normal system associated to (7):

V(x,5) = A(s)¥(x, s), (12)
where
fi(x,s) 0 1.0 O
¥ (x,s) = Li);i)) Coaw=| g 08 0 (13)
T(x,s) ats> 0 0 0

Hence the column vector v evaluated at (k + 1)th sampling node can be related to its evaluation at the kth
node by:

Vi1 (s) = A9, (s). (14)

Regarding the beam element between kth and the (k 4+ 1)th mesh nodes as the mechanical black box “beam
elements” the exponential matrix e?A) is the transmission matrix of the beam element (Molloy, 1958), since
it relates the “input” of the black box v, (s) to its “output” v;(s).

Fig. 8. Circuital analog for the hinge.
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Let us explicitly remark that (14) represents exactly the relation between the values of v(x,s) at two
adjacent sampling nodes without introducing any approximation with respect to the continuum model.

For our purposes it is fruitful to consider the mobility matrix B(9, s) of the same (k, k + 1) beam element,
obtained from the (14) as the matrix relating the kinematical descriptors

jod =/ jod =~ T
[ Uk Uy Ukpr Upyy }
to the contact actions
~ ~ -~ ~ T
[T My Tiyi M

exerted on the beam element (see Molloy, 1958; Newcomb, 1966).

By means of this representation the power expended by the outer world on the beam element is equal to
the inner product between the kinematical and contact actions vectors.

The generic entry of the mobility matrix has the following form:

hi]‘(é, S)
—1 + cosh (ei@ad./5) cos (i@ ad /5)’

Bij(0,s) = Lj=1,...,4, (15)
where £;;(d,s) is a holomorphic function of the beam element size é and the Laplace variable s, thus B;; is a
meromorphic function.

Since Bj; has an infinite number of poles, it is not possible to simulate exactly the beam element by a finite
lumped circuit; hence a suitably truncated Laurent expansion of the mobility matrix with respect of the size
o0 in the neighborhood of the pole at zero is performed. The ring of convergence of the expansion is de-
termined by the absolute value of the first non-zero root of the denominator in (15), that is:

5 o 473004
max — a\/a ?

where o = Imls].

Condition (16) establishes an upper bound for the mesh size é once the highest vibration frequency of the
beam to be controlled is fixed. Truncating the Laurent expansion at the third power of é we obtain for B a
Foster’s canonic form (Newcomb, 1966) relative to a completely passive finite lumped circuit. Therefore the
following approximate mobility matrix is found:

(16)

B(6,s) ~ éKo(é) + 5K (6), (17)

where both the residue matrices are symmetric and positive semi-definite.

The analog circuit for the beam element can be designed as a completely passive four port electric
network as depicted in Fig. 9, the dimensionless impedance matrix of which is equal to the approximate
mobility matrix B(J,s), given by the RHS of (17). Indeed because of the listed properties for the residue
matrices the analog network can be synthesized as the series connection of two networks, see Newcomb
(1966), the former being realized by two uncoupled capacitors terminating a multiport transformer and the
latter by four uncoupled inductors terminating a second multiport transformer.

The values of the uncoupled impedances are determined by the eigenvalues of the residue matrices in
(17), while the eigenvectors of these matrices characterize the turns ratio matrices of the two ideal trans-
formers.

Cumbersome but simple calculations show that the needed inductances L; (i =1,...,4) and capaci-
tances C;, C,, together with the turns ratio matrices 7j, 7., are given by:
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®
®
33z,
I 3E "3,
I3 3z,
33 L,
I 3=
I 31 =G
9
L
Fig. 9. Analog circuit for the beam element.
Ko 1 0 1 0
To=751-16 1 16 1] (18)
K %15 1_(31 élé 115
T, =% 6 69, 19
V2-d0 1 de (19)
I 26 -1 25
C1_12 _12 _12 _17F2 _1 5
i C1L2f720§7 C2L1f48C7 C2L3746805’ C1L4—4080g,

2 4 2
R NI (LR W
o (BY R (2) L "
where the coefficients ky and x., are free for contingent design needs.

The applied synthesis technique allows for an immediate mechanical interpretation of the port voltages
and currents: the port voltages represent the velocity deflection and angular velocity at the two ends of the
beam element, while the port currents represent the contact actions (bending moment and shear force)
exerted by the outer world on the beam element. As a consequence, the circuit analog for the entire beam is

easily obtained by means of a cascade connection of the four port networks equivalent to the beam elements
(see Fig. 10).

o—] —o— —o—] —o
o— —o— —o—| —o
B B B
o— —o— —o—| —o
o— —o0— —o—| —o

Fig. 10. Cascade connection of the beam-elements analog circuits.
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Furthermore the mechanical boundary conditions are naturally imposed properly terminating the ports
of the boundary modules. For instance a clamped end is simulated short circuiting both of the ports of the
edge module; this connection corresponds to set the boundary deflection velocity and angular velocity to
Zero.

Let us explicitly remark that the circuital beam element synthesized can be realized in a completely
passive way and that considerably low performances are requested to all the electric components.

3. PEM beam

A PEM beam is obtained uniformly distributing a set of bending piezoelectric actuators on a beam and
using them as two terminal active networks in a beam analog circuit.

3.1. Distributed piezoelectric effect

A bending actuator (shown in Fig. 11) can be regarded as a lossless lumped transducer having one
mechanical and one electrical terminal. The mechanical state is characterized by the bending deformation
Afp and the exerted couple Mp while its electrical state is characterized by the potential drop V» between its
plates and the stored capacitive charge Op.

Usually a piezoelectric actuator operates in linear quasi-static regimes. Therefore its behavior can be
modelled by the following linear constitutive equation

-z Y]
QP _kme kee VP ’

where Ay, is the actuator bending stiffness, k. its capacitance and k. its electro-mechanical coupling
coefficient.

From an electric point of view, the actuator can be regarded as a capacitor in parallel connection with a
current source as shown in Fig. 12: the imposed current value depends on the bending deformation speed.
This circumstance suggests to use the actuators in the analog circuit whenever a capacitor is needed.

Thus, the first circuital scheme for the PEM beam is realized simply connecting one electric terminal of
each actuator to the ground node and the second one to every kth node according to Fig. 13. On the other
hand it is easy to prove that a convenient choice for an efficient energy transfer in the second scheme (see
Fig. 14) is obtained replacing the sole capacitance C; by the piezoelectric actuator. Indeed it can be proven
that a current source parallel to the capacitor C, provides a comparatively negligible energy transfer.

The piezoelectric current sources depending on the bending deformation speed (see Porfiri, 2000;
Alessandroni, 2000), provide a non-homogeneous term in the partial differential equation governing the
voltage evolution in the electric network:

Fig. 11. Bending PZT actuator.
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+

VP kee _ % T kmeAéP

Fig. 12. Electric scheme of a bending PZT actuator.

Fig. 13. PZT insertion in the “finite differences” analog circuit.

PZT

3l 3 3IE e
3 3 3E =

Fig. 14. PZT insertion in the “mobility matrix” analog circuit.

VIV 4otV — B, = 0.

5307

(22)

Eq. (22) is the result of an homogenization procedure performed for both the mentioned analog circuits.
The e-m coupling coefficient are given by Table 1, where 1 is the piezoelectric covering factor, defined as the
percentage of beam length covered by the piezo-layer. From a mechanical point of view, the actuators
modify the constitutive equation for the bending moment (21), introducing an additional mechanical
bending stiffness and a surplus of bending moment linearly depending on the piezoelectric voltage. As it is
reasonable to consider the bending stiffness and mass per unit length of the piezo-layer negligible with

Table 1

Electro-mechanical coupling coefficients

Circuit in Fig. 14

Circuit in Fig. 14

2
ﬁem =

2
Bine =

Ko kmePOpw*n h

_kmel*Spw*n h

—_— J— 2 — J—
\/E KM kcc V(J ﬂem KM kcc V(J
kPl o _bnlt
Ko Ky h me Ky h
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Table 2
Characteristic voltage to preserve a gyroscopic coupling represented by the coefficient /i
Circuit in Fig. 14 Circuit in Fig. 14
haky  [pol pol
Vo = Vo=nh
AR PN ke
- kmelzwn pol g ke P pol
KM kee 1<M kee

respect of the proper bending stiffness and mass per unit length of the beam, the following second coupled
electro-mechanical equation for the PEM beam is obtained

Ulv =+ “4b+ﬂi1ef/” =0, (23)

where the m—e coupling coefficient is given by Table 1. We can choose the characteristic potential 7 im-
posing that ﬂfm = ﬁgm, so to obtain the expressions for the coupling coefficient f§ given in Table 2.

In conclusion the evolution equations for a conservative PEM beam are: *
| I
oV +otp + BV =0, K (24)
VWV Lot — B =0 o, Poge.  [dlp
’ p=+ n .
KM kee

The evolution equations expressed in terms of the kinematical descriptors u and yy (dimensionless transverse
displacement and flux linkage) become:

MIV+O€412—|— 2 /1 :07
lpIV + OC4l/; _ﬁﬂ;pu// =0 (25)
where lﬁ =7V.

3.2. PEM beam performances analysis

Two different approaches for the analysis of the PEM beam model (25) are addressed here. The former
considers an electro-mechanical wave freely propagating in an PEM beam, while the latter contemplates a
modal evolution for a constrained PEM beam.

3.2.1. Propagation properties
Let us consider an electro-mechanical wave of wavelength 4 and angular frequency w freely propagating
in a PEM beam:

Uty = |4 | exp (i((2m/ 2x — o)),
v )eo=5]

where 4 and B are respectively the mechanical and electric complex wave amplitudes. The dispersive re-
lations for the conservative PEM beam can be decomposed in the following form:

@4~ (4) = (@e(2) £ @e(4)), (26)

4 In order to have the same algebraic signs for both the synthesized conservative PEM beam, it is sufficient to choose a negative .
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Fig. 15. Dispersion relation in a conservative PEM beam.

we(2) = ﬂ—zwo(z), (27)

wo(A) = (2)2.

The term o, represents the frequency of the two waves propagating independently in the uncoupled
electrical and mechanical supports. The terms w. and @, can be regarded as the envelope and the carrier
frequencies ~ of the electro-mechanical signal:

oy o

C_T?
= (28)
¢ 2

Hence the coupling effect generates a sinusoidal modulation w, on the carrier w., due to the energy transfer
between the electrical and the mechanical wave components.

In Fig. 15 the phase speed v, versus the wave number ° k for the uncoupled (dash line) case and the
coupled (solid lines) one is drawn showing the splitting of the solution around the uncoupled curve given by
the coupling.

Furthermore, the relation between the electric and mechanical wave amplitudes

A(0) = iB(w), (29)

states that the relative intensity of the electrical and mechanical wave components is always the same in-
dependently of the frequency, i.e. every electro-mechanical plane wave propagating in the PEM beam
contains an equal amount of electrical and mechanical energy. Moreover Eq. (29) states that, as the wave
electric component is in quadrature with respect to the mechanical one, the energy of the system completely
flows back and forth from one form to the other.

> The concepts of carrier and envelope frequencies directly derive from the theory of signals, dealing, for instance, with amplitude-
modulation (AM) broadcasting communications.
© The phase speed is defined as the ratio between the frequency w, _ and the wave number k = 27/
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Hence, as expected if the PEM beam is designed exploiting the circuital analogs an optimal coupling, is
really obtained, which is furthermore completely independent of the frequency of the wave freely propa-
gating in it.

3.2.2. Coupled modal analysis

In this subsection a modal analysis for a simply supported PEM beam (shown in Fig. 16), based upon
the Galerkin method, is performed.

The set of basis functions chosen to represent the deflection u(x, ¢) and the flux linkage y(x, ¢) of the PEM
beam is constituted by the eigenfunctions ¢,,(x) of the spatial differential operator determining the modal
forms for both the uncoupled motions:

@,,(x) = V2sin (%—nx), A :%, m=12,...
m m
Consequently a Fourier expansion for the solution of (25) is considered:
u(x, t) N pm(t):|
= X y
Lb(x, t>] 2 {qm@ #n(x)

where p,,(¢) and ¢, (¢) are respectively the mechanical and electrical Fourier coefficients of the expansion.
With simple calculation the following state space system for the ODEs governing the time evolution of a
generic pair of electrical and mechanical Fourier coefficients is obtained

2l X 0 ! 07 [pnlt)

<)o . 0 0 oL (@)

Ll e [ (30)
0 0o () - o Jlaw

Let us explicitly remark that the chosen boundary conditions and basis functions lead to a set of uncoupled
evolution problems for each electro-mechanical mode, hence it is possible to easily derive the analytical
solution for the Fourier coefficients.

The set of natural frequencies of the PEM beam is determined by the characteristic polynomials
D,,(s) = det(A,, — sI) of the evolution matrices A,, in Eq. (30):

Dy(s) = s* +2[(0f)" + ()]s + (@) = ()] =0, (31)

where w? and ! coincide with the envelope and carrier frequencies in (27) evaluated at the modal
wavelengths:

of = O (A)layms

oy
w;n = w:l(/l) |2/m

(32)

| analog circuit |

NN \

—_—

Fig. 16. Simply supported PEM beam.
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Considering the following initial conditions for (25)

u(x, 1)}, = Zp?nqom(X),
m=1
lﬁ(x, t)‘t:() =0,

u(x, t)|t:0 =0,
Y(x )] =0

the following time evolution for the coefficients of p,, ¢,, is derived:

(1) = PP cos(ws 1) cos(aft) +p?ﬂ% sin(wS t) sin(wS ),
gn(t) = PY, sin(ws,t) cos(ws,t) — pl 22 cos(ws,7) sin(ws 1),

5311

(34)

which again (see (29)) exhibits how the evolution for the electro-mechanical mode is composed by two
modulated signals in quadrature. Figs. 17 and 18 again show how the energy goes back and forth from the
mechanical to the electric form: they are obtained for an aluminum PEM beam the constitutive piezo-

electro-mechanical coefficient of which are specified in Table 3.

The used piezoelectric transducer are piezoceramic patches (T110-H4E-602 (PSI-5SH4)) made of lead
zirconate titanium (PZT) produced by Piezo Systems (Piezo Systems). Remark that once the mechanical

D q,

1 1
0.75 n n 0.75 ” ﬂ
0.5 0.5
0.25 0.25
0 0
-0.25 -0.25
-0.5 -0.5
-0.75 u u U U U b -0.75 u

!

Fig. 17. Time evolution of the first Fourier electrical and mechanical coefficients.
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Fig. 18. Mechanical (dash) and electrical (solid) energy time evolutions.
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Table 3
Electro-mechanical parameters of the considered PEM beam
Beam length I=1m
Sides of rectangular section 4 mm x 5 cm
Mass density per unit length p = .54 kg/m
Bending stiffness Ky = 18.67 Nm?
PZT capacitance ke =1.02x 10°°F
PZT coupling coefficient ke =3.97 x 1073 (N/V) m = C
PZT covering factor n=1
Number of actuators 10
Characteristic frequency @ = (n*/1?)\/Ky/p = 58 radls
Characteristic tension Vo =534V
Table 4
Values of the electrical elements in the analog circuits
Circuit in Fig. § Circuit in Fig. 9
Negative inductance: 2.83 H Maximum inductance: 70 mH
Positive inductance: 707 mH Turns ratio (magnitude order): 1 = 100

parameters are fixed the electrical ones are given by Eqgs. (18) and (20) in the case of the circuit in Fig. 5 or
by Eq. (10) in the case of the circuit in Fig. 9, as presented in Table 4 for the considered PEM beam.

3.2.3. Electro-mechanical damping

Once it is proven that conservative PEM beams assure an efficient electro-mechanical coupling, it is
reasonable to investigate the possibility of damping mechanical vibrations via dissipative elements to be
inserted in the electric circuit. This can be done adding to the circuit sketched in Fig. 14 a resistor in parallel
connection with each actuator (see Fig. 19).

Going through calculations similar to those detailed in Section 2, it is easy to derive the governing
equation for the so defined “‘electrically dissipative PEM beam”:

ot = wzl4i,
Ky
W 4 ot 4 Y =0, g Logne [l
YN 4 — Bl 4 =0, Ky "k
=0—7F.
T TR

The dissipative electric circuit so obtained is the electric analog for a beam connected to a bed of me-
chanical dampers as in Fig. 20, or equivalently for a beam embedded in a viscous fluid.

Fig. 19. Dissipative circuital module in the “finite differences” analog circuit.

IHFE
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AT

Fig. 20. Beam over a bed of dampers.

The analysis of the dissipative system is performed as for the conservative PEM beam: indeed the
evolution matrix in the (30) must be slightly modified simply including an extra non-zero diagonal term:

. pn(?) Pn(?)
() ()
— | =B, |: , 35
de | pu(?) Pu(1) (33)
Gn (1) G (1)
with
0 0 1
0 A 0 0 1
B, = _(%) 0 0 B (;TT) (36)
0 — (=) _Bem®
We remark that:
1. the evolution matrix B,, in (35) is obtained from A,, replacing the vanishing coefficient A,,,, with —y/a*.

2. Tt is possible to represent the characteristic polynomial P, (s) of B,, as the sum of the “non-dissipative
polynomial” D,,(s) defined in (31) and a term linearly dependent on the dissipation coefficient y:

D)+ LN (s
Pu(s) = Din(s) + 5 N(s), (37)

No(s) = sls” + (@),

This representation of the characteristic polynomial suggests to consider P, (s) as the denominator of the
transfer function of the closed-loop system in Fig. 21, where the dissipation coefficient y plays the role of a
feedback amplifier, the aim of which is to displace the poles of the non-dissipative system from the
imaginary axis.

Following the methods widely applied in the theory of control, it is useful to analyze the location of the
poles of the closed-loop transfer function with respect to the parameter y by means of the root locus
technique. In Fig. 22 the root locus of the characteristic polynomial P, (s) is represented as a set of curves
parametrized by y varying in R*.

4

SN | N
AU D)

v

Fig. 21. Closed-loop system.



5314 S. Alessandroni et al. | International Journal of Solids and Structures 39 (2002) 5295-5324

opt
m)

"

Fig. 22. Root locus of the characteristic polynomial B, (s) varying the parameter 7.

At y = 0 (starting points of the root locus) the resistances tend to infinity, so that the roots lie on the
imaginary axis and represent the natural frequencies of the mth mode conservative PEM beam.

Conversely, as y tends to infinity (end points of the root locus) the resistances vanish, short circuiting the
actuators to ground. Thus the electric circuit is not apt any more to support the electric wave propagation
and the coupling effect is definitively lost.

Furthermore, the end points of the root locus, are formed by a couple of purely imaginary conjugate
roots £jw” (describing the evolution of the free vibrating beam) and other two purely real valued roots
which tend respectively to zero and to —oo.

In fact there exists a threshold value y, such that when y > y, two roots for P, are purely real. This last
circumstance states mathematically that when the shunting resistance is small enough the electric circuit
loses its propagative properties, the PZT actuators are practically short circuited and PEM beams reduce to
standard beams.

Finally it can be proven that for

y =7t =2 (mn)’ (38)

m

the real parts of the four roots of P, coincides and equal —(?/o*)(mn)*. The corresponding value for the
shunt resistance will be assumed to be the optimal value for an efficient and quick mechanical damping.
This assumption is well grounded, as:

1. when y = y°"" the damping ratios of the considered electro-mechanical modes for the dissipative PEM
beam have a common value (°"

m 2

2. when 7 # 7P there exist modes the damping ratio of which is smaller than {°"

From a mechanical point of view the existence of the optimal value y°" can be interpreted as follows:

1. Too high-shunt resistances (i.e. low values for y) allow for a good electro-mechanical coupling, but pro-
vide a weak dissipation. Thus the energy still goes back and forth from one form to the other and the
time evolution for the mechanical Fourier coefficient p,, (considering, as before, a sole initial deflection)
still presents a pseudo-periodic decreasing envelope. In Fig. 23 it is presented (for the PEM beam in
Table 3) the high-shunt-resistance time-evolution of the first mechanical Fourier coefficient: this figure
and all the following ones are relative to initial data of type specified in 33, where only p? is different
from zero.
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Fig. 23. Too high-shunt resistance time evolution.

2. On the other hand, too low-value resistances (i.e. high values of y) interdict an efficient coupling between
the two systems slowing down the flowing of energy from one form to the other. Consequently, because
of the lack of coupling, the evolution of p, does not present any more an oscillating envelope, while a
decreasing exponential slope related to the real part of the nearest pole to the imaginary axes is evident.
In Fig. 24 it is presented (for the PEM beam in Table 3) the low-shunt-resistance time-evolution of the
first mechanical Fourier coefficient.

The previous considerations substantiate the optimum criterion we have introduced: a reasonable op-
timal damping for the mechanical vibration via electric dissipation can be obtained imposing that the
absolute value for the real part of the nearest pole to the imaginary axes is maximum, which corresponds to
request to the lowest damping ratio of the poles to be maximum as a function of y. This is the “pole
placement” criterion (see e.g. Hagood and von Flotow, 1991). This criterion does not explicitly refer to the
electrical dissipation of the mechanical energy. However both the analysis of the eigenvectors corre-
sponding to the plotted eigenvalues and some numerical simulations indicate that in the neighborhood of
bifurcation points y = y°" also a type of maximum dissipation criterion is verified.

This optimization criterion indicates that the circuital resistance has to be chosen so as to locate the
electro-mechanical poles at the first bifurcation points characterized by y°". In Fig. 25 the mechanical and
electrical energy evolution of the dissipative PEM beam is shown using a too high, a too low and an optimal
resistance respectively: referring to the beam specified by Table 3 it is estimated that the optimal resistance
has the value of 29 kQ.

Y2

0.75 n
0.5

l
27 Ax 6xn 8nm 10xn 12x 1l4dn 167 187 207

Fig. 24. Too low-shunt resistance time evolution.
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Fig. 25. Mechanical (dots) and electrical (solid) energy time evolutions.
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Fig. 26. Optimal damped evolution of the first mechanical coeflicient.
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Fig. 27. Damped evolution of the first three modes.

In Fig. 26 the time evolution for the mechanical p; coefficient and for the related electro-mechanical
energy content are shown, obtaining a damping ratio (™" equal to 14.4%.

In Fig. 27 the evolution of the first three mechanical modes is shown corresponding to purely mechanical
initial data and with the value for resistance set equal to the optimal value relative to the first mode. As the
eigenfrequency of the simply supported beam is an increasing function in dependence of the mode number,
it is evident that when the first mode has been extinguished, also all harmonics are extinguished.

4. PEM plate
The results above obtained for the PEM beam can be simply generalized to a PEM plate. This is a useful

by-product of the choice made when a PEM structure was defined using an “analog” electric circuit: indeed
as a consequence of their definition all vibration problems for PEM structures reduce to a two-modes



S. Alessandroni et al. | International Journal of Solids and Structures 39 (2002) 5295-5324 5317

coupled evolution governed by an equation of the type (35). In the following the PEM plate is introduced
and analyzed, exploiting an analog circuit synthesized from the finite-differences method approach, ad-
dressed in Section 2.

The concepts of the PEM beam and the PEM plate allow for the design of PEM frames, developed to
control and damp mechanical vibrations in generic frames constituted by beams and plates. Let us explicitly
remark that, generalizing the results exhibited in Section 2, the boundary conditions for the plate have a
simple electric analog so that the electrical circuit exploited in the generic PEM frame is completely analog
to the vibrating frame.

4.1. Governing equation for the plate

In order to derive the analog circuit for the plate, the dimensionless Laplace transform of the Kirchhoff—
Love plate equation needs to be recalled. Let us consider a square plate of edge length /, thickness /&, mass—
density per unit area p and the bending stiffness S,, the governing equation for the deflection velocity v is:

VAV20(r, 5) + ots2b(r,s) = 0, ot = w2z4Sﬁ, (39)

P

(the symbol V?V? represent the biharmonic dimensionless operator and & the deflection velocity Laplace
transform). ’

4.2. Synthesis of the plate analog circuit

Going through the steps taken in Section 2 to derive the beam analog based on the finite difference
method, the plate analog circuit is easily derived from the two dimensions centered finite-differences ap-
proximation of Eq. (39) defined on a uniform-step grid sampling the spatial domain of the plate (see Fig.
28):

(g n ot4sz> 5y + Uiy2j — 6041 : 60;_1; + U2 I Dy j2 — O0;j41 : 60;;_1 + 0;j—2
0 0
Vit j1 + Oimt ja1 + Opp1 jm1 + iz ji
+ 3
0
Associating each sampling node of the grid to an electrical node of the analog circuit, Eq. (40) can be

regarded as the governing equations for the electric potential of the circuit having the structure shown in
Fig. 29, where

=0. (40)

Li=LJ6, Ly=Ly=-L (41)
and
_p 4
L =20 (42)
Sp

Again, the presence of negative inductances in the analog circuit forbids its completely passive realization.
However the considerations about the simulation of negative impedances provided in Section 2 still hold.

Let us underline that the plate circuital analog is not just the superposition of two beam analogs along
the axial directions, since two additional transverse transmission lines are necessary.

7 We choose /, a given fixed modal frequency @ and / as the characteristic constants for the dimensionless referential position vector
r, Laplace-variable s and deflection u respectively.
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Fig. 28. Plate sampling grid.

Fig. 29. Plate analog circuital module.

4.3. Conservative PEM plate

In analogy with the PEM beam we consider a plate on which a set of piezoelectric actuators are uni-
formly distributed and properly included in the plate circuital analog in order to realize the so called PEM
plate. Again the actuators play the role of the capacitors connected between each electric node and the
ground. Uniformly distributed square actuators are chosen to cover the plate, the influence factor # is
defined as the ratio between the area of the plate covered by the piezo layer and the area of the whole plate.
Skipping the calculations, formally analogous to the ones detailed for the PEM beam, once the homoge-
nization procedure for the electric quantities is considered, the following dimensionless governing equations
for the PEM plate are found:

R
V2V + o' + BV =0, Sp (43)
VA2V + otV — PV = 0, o Pogme [fp

ﬁ - Sp k_ee,

where V7 is the dimensionless capacitive potential drop field, and the characteristic potential

Vo = hwl, /kﬁ (44)

was introduced.
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Fig. 30. Element of the dissipative PEM plate.

4.4. Dissipative PEM plate

Once an efficient electro-mechanical coupling is guaranteed, it is interesting to investigate the mechanical
vibrations damping via electric dissipation introducing resistors in the electric circuit as in Fig. 30.

The electric circuit (without the current generators) in Fig. 30 is the analog circuit module for a plate
connected to a “bed” of dampers.

The homogenized dimensionless evolution equations in terms of the dimensionless flux linkage and
deflection for the so called dissipative PEM plate are:

p
=t L

SP
V2V2u + oii + fFV = 0, . Pwogm. [np (45)
V2V + ot — AV 4+ = 0, S, Ve
L

4.4.1. Analysis of dissipative simply supported or completely clamped PEM plate

In the following an analysis of a simply supported dissipative PEM plate, based on the Galerkin method,
is performed. The set of basis functions chosen to represent the deflection u(x, y, ) 8 and the flux-linkage
V(x,y,t) of the PEM plate is the set of modal characteristics of the simply supported plate, i.e. the ei-
genfunctions ¢,,,(x,y) of the spatial differential operator determining the modal forms for both the elec-
trical and mechanical uncoupled motions:

. (2 . (2
gomn(x,y)_2s1n()nx> sm<;y), n,me N, (46)
where
2 2
I = —, A==, nm=12,... (47)
m n

Let us remark that the introduced basis functions is the tensor product between the modal forms of two
beams, the axes of which are parallel to the coordinate axes.

8 Where x and y are the Cartesian coordinates of the dimensionless position vector r, in the plane of the reference configuration.
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Considering as usual an expansion of the kinematical electrical and mechanical descriptors on the chosen
set of basis functions, i.e.:

] = [ et ®

the following set of ODEs for the time-evolution for the coupled electro-mechanical modes of a simply
supported PEM plate is achieved:

Poun(1) Poun(1)
d mn t mn t
de | pun() Dun(1)
Gnn (1) Gunn (1)
where p,,(t) and g,,(¢) are the mn mode Fourier coefficients and the evolution matrix is given by:
0 0 1 0
0 0 0 1
Am - 74 (m2+n?)? 72 B2 (m2+n? .
_ el 0 0 Pl ) (50)
0 1'[4(}’)12:412)2 nzﬂz(n22+n2) _;;

The previous normal system is formally identical to (35) exhaustively analyzed in Section 2 dealing with the
vibrations of a simply supported dissipative PEM beam and all qualitative considerations there developed
hold.

Finally we consider a completely clamped aluminum PEM plate (its electro-mechanical characteristics
are specified in Table 5) and find its electro-mechanical optimally damped vibrations induced by an initial
impulse as specified in Fig. 32.

From Table 5, Eqs. (42) and (41) it is immediate to find the following valus for the inductors used in the
analog circuit in Fig. 29:

L, =1.07H,
Ly = Ly = —6.44H.

We use again a Galerkin method; however, for computational reasons, instead of using the complex ei-
genmodes relative to the completely clamped plate equations we use the basis:

(pmn(xvy):fm(x)ﬁl(y)v n,me N7 (51)

Table 5
Electro-mechanical parameters of the considered PEM plate

Edge length I=1m

Thickness h =4 mm

Mass density per unit area p = 10.8 kg/m?

Bending stiffness S, =410.3 Nm

PZT capacitance ke =041 x 10°F

PZT coupling coefficient ke = 3.55 x 1073 (N/V) m = C

PZT covering factor n=02

Number of actuators 100

Characteristic frequency =2(n?/1?)\/S,/p = 121 — 7 rad/s

Characteristic tension VO =250V




S. Alessandroni et al. | International Journal of Solids and Structures 39 (2002) 5295-5324

where

Ju(&) = cosh(k,&) — cos(k, &) +

cosh(x, &) — cos (i, &)
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Fig. 31. Time evolution of the first non-vanishing electrical and mechanical modes.
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Fig. 32. PEM response to an impulse.

with
1

COSK, = )
" coshk,

(53)

Remark that {f;} is the eigenbasis for a clamped-clamped beam.

Obviously the evolution equations for the nth Fourier coefficient will now involve all the others: however
a truncation—involving a negligible error—can be performed. The plots in Fig. 31 show the time evolution
of the first non-vanishing electrical and mechanical Fourier coefficients when the initial conditions are given
by a pure deformation in the first mechanical modal shape, while Fig. 32 depicts, at different time instants,
the deformed plate and the iso-i/ curves when the plate is excited by an impact hammer.

It shows that the optimal resistance for the simply supported-plate vibration mode is effective for every
electro-mechanical vibration. The interested reader is referred to the web site www.disg.uniromal.it/
ncs.htm where suggestive animations can be downloaded, including that one from which Fig. 32 was
produced.

5. Conclusions

Conservative PEM structures are defined as structures composed by
1. mechanical members,
2. their analog electric circuit,

3. a set of piezoelectric transducers uniformly distributed on the members.

If the electrical circuits are the analogs of damped members and therefore include dissipative elements
then the conceived PEM structure will be qualified as “‘electrically dissipative”.


www.disg.uniroma1.it/ncs.htm
www.disg.uniroma1.it/ncs.htm
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The analysis developed in the previous sections shows that the available piezoelectric transducers allow
for a rapid damping of mechanical vibration in the case of structural members like those constituting a
robotic arm, a panel for noise control or a helicopter rotor blade: indeed numerical simulations performed
for PEM beams and plates are relative to commercial actuators, electric circuits which can be easily and
cheaply realized, and aluminum members the larger dimensions of which are of the order of the meter.

Future theoretical investigations should include:

1. the study of more complex structures constituted by several beams and plates,
2. the conception of PEM shells and the determination of their evolution equations,
3. the study of the damping effect introduced by electric dissipation on forced vibrations of PEM structures.

Finally we underline that the theoretical results presented in this paper prove that an experimental
prototype of PEM beams and plates can be detailedly designed and that the available technological state of
the art finally allows for the engineering application of the concept of purely electrical and truly passive
damping of mechanical vibrations exploiting PZT transducers. The construction of such a prototype will
require, however, a main experimental effort.
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